PEVK domain of titin: an entropic spring with actin-binding properties.

نویسندگان

  • Wolfgang A Linke
  • Michael Kulke
  • Hongbin Li
  • Setsuko Fujita-Becker
  • Ciprian Neagoe
  • Dietmar J Manstein
  • Mathias Gautel
  • Julio M Fernandez
چکیده

The PEVK domain of the giant muscle protein titin is a proline-rich sequence with unknown secondary/tertiary structure. Here we compared the force-extension behavior of cloned cardiac PEVK titin measured by single-molecule atomic force spectroscopy with the extensibility of the PEVK domain measured in intact cardiac muscle sarcomeres. The analysis revealed that cardiac PEVK titin acts as an entropic spring with the properties of a random coil exhibiting mechanical conformations of different flexibility. Since in situ, titin is in close proximity to the thin filaments, we also studied whether the PEVK domain of cardiac or skeletal titin may interact with actin filaments. Interaction was indeed found in the in vitro motility assay, in which recombinant PEVK titin constructs slowed down the sliding velocity of actin filaments over myosin. Skeletal PEVK titin affected the actin sliding to a lesser degree than cardiac PEVK titin. The cardiac PEVK effect was partially suppressed by physiological Ca(2+) concentrations, whereas the skeletal PEVK effect was independent of [Ca(2+)]. Cosedimentation assays confirmed the Ca(2+)-modulated actin-binding propensity of cardiac PEVK titin, but did not detect interaction between actin and skeletal PEVK titin. In myofibrils, the relatively weak actin-PEVK interaction gives rise to a viscous force component opposing filament sliding. Thus, the PEVK domain contributes not only to the extensibility of the sarcomere, but also affects contractile properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Titin-actin interaction in mouse myocardium: passive tension modulation and its regulation by calcium/S100A1.

Passive tension in striated muscles derives primarily from the extension of the giant protein titin. However, several studies have suggested that, in cardiac muscle, interactions between titin and actin might also contribute to passive tension. We expressed recombinant fragments representing the subdomains of the extensible region of cardiac N2B titin (tandem-Ig segments, the N2B splice element...

متن کامل

Differential actin binding along the PEVK domain of skeletal muscle titin.

Parts of the PEVK (Pro-Glu-Val-Lys) domain of the skeletal muscle isoform of the giant intrasarcomeric protein titin have been shown to bind F-actin. However, the mechanisms and physiological function of this are poorly understood. To test for actin binding along PEVK, we expressed contiguous N-terminal (PEVKI), middle (PEVKII), and C-terminal (PEVKIII) PEVK segments of the human soleus muscle ...

متن کامل

Interaction between PEVK-titin and actin filaments: origin of a viscous force component in cardiac myofibrils.

The giant muscle protein titin contains a unique sequence, the PEVK domain, the elastic properties of which contribute to the mechanical behavior of relaxed cardiomyocytes. Here, human N2-B-cardiac PEVK was expressed in Escherichia coli and tested-along with recombinant cardiac titin constructs containing immunoglobulin-like or fibronectin-like domains-for a possible interaction with actin fila...

متن کامل

Nature of PEVK-titin elasticity in skeletal muscle.

A unique sequence within the giant titin molecule, the PEVK domain, has been suggested to greatly contribute to passive force development of relaxed skeletal muscle during stretch. To explore the nature of PEVK elasticity, we used titin-specific antibodies to stain both ends of the PEVK region in rat psoas myofibrils and determined the region's force-extension relation by combining immunofluore...

متن کامل

Interaction of nebulin SH3 domain with titin PEVK and myopalladin: implications for the signaling and assembly role of titin and nebulin.

Skeletal muscle nebulin is thought to determine thin filament length and regulate actomyosin interaction in a calcium/calmodulin or S100 sensitive manner. We have investigated the binding of nebulin SH3 with proline-rich peptides derived from the 28-mer PEVK modules of titin and the Z-line protein myopalladin, using fluorescence, circular dichroism and nuclear magnetic resonance techniques. Of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of structural biology

دوره 137 1-2  شماره 

صفحات  -

تاریخ انتشار 2002